
S T A B I L I T Y  OF A J E T  OF  V I S C O E L A S T I C  L I Q U I D  

P R E S E N C E  OF A M A S S  F L U X  A T  I T S  S U R F A C E  

IN T H E  

A.  L .  Y a r i n  UDC 532.522.5 

The stabili ty of a jet of v iscoelas t ic  liquid with allowance for  mass  t r ans fe r  at its surface is in- 
vest igated by the method of small  per turbat ions .  

The action of sur face- tens ion  forces  leads to the instability and breakup of jets of a dropping liquid 
having a small  velocity relat ive to the surrounding gas.  Rayleigh [1] investigated jets of an ideal liquid. The 
influence of the viscosi ty  and shear  e las t ic i ty  of a liquid on the stability of a jet  was studied in [2-8]. Recently 
installations have begun to be c rea ted  which use jets of a dropping liquid at whose surface intense mass  t rans -  
fe r  takes place (see, e . g . ,  [9]). However, detailed data are  absent on the influence of one of the factors  - the 
m a s s  flux at the surface - on the breakup of a jet.  

Est imation of the role of m a s s  t r ans fe r  is neces sa ry  when using jets of volatile substances and jets with 
chemical  react ions  and intense evaporation at the surface.  The influence of mass  t ransfer  on the stability of 
a jet of dropping liquid is investigated theoret ical ly  below. 

1. Let us consider  a cyl indrical  laminar  jet of incompress ib le  Maxwellian liquid. The unperturbed 
c r o s s  section of the jet is a c i rc le .  At the surface of the jet there is a mass  flux which does not depend on the 
curvature  of the surface .  The space outside the jet is filled with a nonviscous gas being l iberated at the su r -  
face of the jet.  We neglect  the compress ib i l i ty  of the gas.  We will also neglect  the decrease  in the radius of 
the jet ,  assuming that there is a mass  source or  sink at the surface of the jet.  The value of the coefficient of 
surface tension of the liquid is assumed to cor respond to the tempera ture  at which the p rocess  of mass  t r ans -  
fe r  under considerat ion takes place.  

We use a cyl indrical  coordinate sys tem moving with the jet whose axis coincides with the axis of the jet.  
The sys tem of equations of continuity and motion 

dY 
divV = 0, p -- DivP (1.1) 

dt 

is closed inside the jet by the rheological  equation of a Maxwellian liquid [8, 10], 

--_ 1 ( p + p ~ ) + l  O ( p + ~ ) ,  (1.2) 
2n 2~ ot 

while outside the jet P = - p 6 ;  5 is  a unit tensor .  

The unperturbed s teady-s ta te  solutions of the sys tem (1.1) will be 

Vrl = Vet = vzt = O, Pro1 = Po=i = Pm = O, (1.3) 

inside the jet  and 

Pi = P o l ,  Prri = Pool = Pzzi = - -  Pol 

ja 1 I"~ + Po2+ 1 jz 
p~r 2 ~r z 2 P2 

outside it. 

The connection between the p r e s s u r e s  P01 and P02 is determined by the equation 

P0~ = P0t - -  - -  �9 a 

(1.4) 

(1.5) 
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F o r  smal l  pe r tu rba t ions  of the solutions (1.3) we obtain the following t inear ized  sys t em of equations 
f rom (1.1) : 

Ov'~ t 0% Or" v'~ =0 ,  
Or - @  r " OO -i- ---O~ -t" --P- 

arv; a (rp,r) + aP;o - -P 'o  arpr" 
pl at = o--7 ao a--T--' 

0% 1 0 P'~o @ 1 apo o apo" 
pi ~-[ r ~ (rp;~ 4- - - 7 -  r O0 * -{- Oz ' 

Orv" z O Opo z Orpz ~ 
91 Ot - Or (rp~z)-k ~ - ~  Oz ' 

Or) ~l 0 
P)r = - -  P' 4- 2~ Or V Ot (P~r @ P')' 

(10% :r o 
Poo = - P' + 2n + (P;o + P'), r O0 ~ Ot 

Ov'~ ~l 0 
P'zz = - -  P' 4- 2q Oz ~ Ot (P'= § p')' 

P;= = ' ~  t -~ - / - -  + ~ 7 - )  , at ' 

( 1 Or; Or; % )  ~ 1 0 P ; o  
P;o = ~ r O0 4 Or r , ~ Ot ' 

[ 0% 1 Or' z ~ "q Opg z 

(1.6) 

F o r  pe r tu rba t ions  which depend exponential ly on t ime the s y s t e m  of equations (1.6) is reduced by the 
method of Landau [11] to the equation 

Ap '=  O. (1.7) 

A solution of (1.7) finite at r = 0 will be 

p ' =  AI~ (kr) exp (ikz -Jr- isO 4- i~t). (1.8) 

The exp re s s ions  for  the pe r tu rba t ions  of the remain ing  quanti t ies are  found by solving a sys tem of 10 ord inary  
different ia l  equations obtained f rom (1.6) [all the pe r tu rba t ions  contain the fac tor  exp (ikz + is0 + iot)]. We 
have 

1 
v~ = -~  {Btls+i (lr) 4- B21~_~ (lr) 4- C [ls+l (kr) + l~_a (kr)]} exp (ikz + isO -}- icrt), 

1 
v~ = -~t {Btls+~ (lr) - -  B2I,-~ (lr) 4- C [1~+1 (kr) - -  l ,_l  (kr)]} exp (ikz + isO -F let), (1.9) 

i {B~lI~+, (lr) + B21I'~-~ (lr) 4- Ck [1~,_~ (kr) 4- I~_~ (kr)] 4- Bils+l (lr) + B21~_i (lr) + C [ls+l (kr) § I~-1 (kr)l 

si 
4- ~ {Bj ,+I  (lr) - -  BzI,_I (lr) + C [Is+i (kr) --1~_~ (kr)]}] exp (ikz 4- isO 4- lot) 

[the exp res s ions  for  the pe r tu rba t ions  of the s t r e s s e s  are  obtained by substi tuting Eqs.  (1.9) into the las t  six 
equations of (1.6)]. Here  

12 = k~+ pii(~ ( l + i--~ t , C =  Ak 
- -  piia (1.10) 

In (1.9) and l a t e r  a p r ime  denotes the de r iva t ives  with r e spec t  to the en t i re  a rgument  of the modif ied Besse l  
functions.  
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The smal l  pe r tu rba t ions  of the solutions (1.4) mus t  be de te rmined  f rom the l inear ized  equation s of con- 
tinuity [the f i r s t  equation in (1.6)] and motion:  

He re  

(o,; c, 0,4 c, ,,;)= o# 
PZ k---O-{- + ~ Or r ~ Or ' 

av~ C~ a% C~ v~ = ao 
P~ T -~ r Or +"~"  r 

/ Oo; C1 av'~ ) ap' 
fa ~ T H r Or = - - T  " 

(1 .n )  

Ct = Ua. (1.12) 

The method of Landau [11] cannot be used to de te rmine  the pe r tu rba t ions  in the region filled with gas ,  since 
there  a re  coeff ic ients  to the pa r t i a l  de r iva t ives  which depend on r on the left  s ides  of (1.11). 

In this  case  the p r e s s u r e  can be e l imina ted  f r o m  (1.11), a f t e r  which there  is no difficulty in de termining  
the pe r tu rba t ions  in the region f i l led with gas .  Detai ls  a re  g iven  in the Appendix, The r e su l t s  have the fo rm 

{ [ o r (  or)] 
G 

+ E se,ka (V31: --  V,K;~ exp (ikz + isO + i~t), 

( s s [ _ ~  (V,t _ V,K.) - icr (Vd.- -  V,K.) 
, v~ = ~ HK, + D -~r C,k a (1.13) 

( +_~C~ (Val 8 _  VaK~) + ~ exp - -  
t(x i(~ 2Ci ] J 

- - E  [ s*C' (Vsl,--VaK.)+ C, exp ( " i~r2 )]1 I ri~ - rio \---2C~-i ] ] ] exp (ikz + isO + iot), 

v' z = {HKs + D [2__~ (Vil , --V,Ks)--  C,k'ia (VgIs__V,Ks) 

+ s,C,o, (v#.- vo o) ] - e sc,ki  V, .)!texp (ikz +/sO + 

Here  the modif ied B e s s e l  functions I s and K s have the a rgument  r I = k r  and 
r l  rx 

V, (r,) =,j': r,K, (n) exp ( - -  Wry) dr,,  V2 (n) = ~ r~K, (r,) exp ( - -  Wry) dr,, 
qo  

i i' ' 1 Ks(q) exp(--  Wry) dri, Va(q) = rtls(r,) exp (--Wry) dri , (1.14) Vs(q) = rt ,~ 

r, i '  1 V~(r~) = ~ r]I,(r,) exp(--Wr~) dr,, Ve(q) = 1,(r,) exp (--Wry) dr, ,  W =  its~2 C,k ~. 
r t  m 

The :per turbat ion of the p r e s s u r e  is  de te rmined  f r o m  any projec t ion  of the equation of motion (1.11) a f te r  the  

subs t i tu t ion  of Eqs .  (1.13). 

2. The condit ions of constancy and continuity of the m a s s  flux at the su r face  of the je t  have the f o r m  

O S ~ J at r = a. (2,1) v;, = ~/-, ~,;, = vh a p,. 

(In these  and subsequent  conditions at the sur face  of the je t  smal l  quant i t ies  of h igher  o r d e r s  a re  omi t -  
ted.) Because  of the continuity of the r component  of the momen tum at the sur face  of the je t ,  

~ P ,  rl - -  P~ : - -  -~r (~ + --~-~-)~ --ct - - -  O~Oz ~ -4 aP2~JZ at r = a .  (2 .2 )  

(2.3) 

The continuity of the tangential  veloci ty  component  at the sur face  of the jet  is  e x p r e s s e d  by the equations 

v ~ l = v ~ + -  i O~ , J O; at r = a ,  
92a O0 ' v~l = v;~ + p~ Oz 

906 



while the condi t ions  of cont inui ty  of the 0 and z componen t s  of the m o m e n t u m  at the su r f ace  of the je t  have the 

f o r m  

Pr0i = 0, P~zl = 0 at r = a. (2.4) 

Subst i tut ing the e x p r e s s i o n s  for  the p e r t u r b a t i o n s  ins ide and outs ide  the jet  into the condi t ions  (2.1)-(2.4),  
we obtain the d i s p e r s i o n  equat ion of the p r o b l e m .  

3. Let  us c o n s i d e r  a x i s y m m e t r i c  p e r t u r b a t i o n s  of the je t  (s = 0, B 1 = Bz, E = 0) and find the solut ions  of 
the d i spe r s ion  equat ion in the long-wave  approx ima t ion .  In th is  ease  W >> ! .  

F o r  a je t  with a sma l l  Ohnesorge  n u m b e r  (g-'M--<< 1) the solut ion of {he d i spe r s ion  equat ion is sought  in the 
f o r m  of a s e r i e s  d = d o + ~'Md 1 + . . . .  Taking Z = 7/C-M and d i s c a r d i n g  smal l  quant i t ies  of h ighe r  o r d e r s ,  of 
the o r d e r  (---Mn, in p a r t i c u l a r ,  we find 

I, (Ko - -  xK,) V X (1 - -  X 2) It 1 P2 n , ( 3 . 1 )  
do 2 Pi Ki [lo ,-+- pzKoli/(PiK,)] +- - -  lo + o~Koli/(PiKI) 

di 
do(1 + d0~?) [10 + pzKol~/(PIKt)] 2 

where  n = 4~'h--/-~U. 

Here  and l a t e r  all  the modi f ied  B e s s e l  funct ions  have the a r g u m e n t  X = ka .  A c c o r d i n g  to the Rayle igh  
hypo thes i s ,  a je t  b r e a k s  up under  the ac t ion  of  the pe r t u rba t i on  which c o r r e s p o n d s  to the m a x i m u m  posi t ive  
value of do In the given case  the f a s t e s t  g rowing  pe r t u rba t i on  c o r r e s p o n d s  to a value of X0 ~ 1/4-2-~ 0.7 [the 
p lus  sign in the f i r s t  equal i ty  of (3.1)]. The r e l e a s e  of gas  at the su r face  of the je t  (n > 0) leads  to an i n c r e a s e  
in the m a x i m u m  pos i t ive  value of d and hence  to des tab i l i za t ion ,  s i n e e K  0 - XK I < 0 when X > 0.6. Con v e r s e ly ,  
the absorp t ion  of  gas  at the su r f ace  of the je t  (n < 0) shows the g rowth  of the f a s t e s t  g rowing  p e r t u r b a t i o n s .  
Consequen t ly ,  the r e l e a s e  of  gas  l eads  to a d e c r e a s e  and the abso rp t ion  of gas  to an i n c r e a s e  in the length of 
the unbroken-up  je t .  Here  and l a t e r  in c o m p a r i n g  the lengths  of je ts  it is a s s u m e d  that  the coef f i c ien t s  of s u r -  
face tens ion  of the l iquids a r e  equal  and the d i s c h a r g e  condi t ions  a re  the s a m e .  

The value of X0 = 1 / 4 2 - c o r r e s p o n d s  to the length of the f a s t e s t  g rowing  p e r t u r b a t i o n  in the absence  of 
m a s s  t r a n s f e r  at the su r f a c e  of the je t .  An inves t iga t ion  of the dependence  d o = d0(x) obta ined shows that  X0 > 
1/4"2"when n > 0 while X0 < 1/4-2-when n < 0. T h e r e f o r e ,  the r e l e a s e  of gas  at the su r face  of the jet  leads  to a 
d e c r e a s e  in the s ize  of the d rops  into which the jet  b r e a k s  up, while gas  absorp t ion  leads  to an i n c r e a s e  in it .  

Pos i t ive  va lues  of d o c o r r e s p o n d  to nega t ive  va lues  of d o when X < 1, with the absolute  value of d~ being 
l e s s  fo r  a Maxwell ian l iquid (T > 0) than fo r  a Newtonian l iquid (3/= 0). Consequent ly ,  e l a s t i c  e f fec t s  in a 
v i s cous  l iquid lead to a d e c r e a s e  in the length of the je t  be fo re  i ts  b r eakup .  Then a jet  of v i s c o e l a s t i c  l iquid is  
l onge r  than a je t  of an ideal  l iquid.  A s i m i l a r  r e su l t  was  obta ined  f r o m  a l i n e a r  ana lys i s  of the b reakup  in [6] 
without  a l lowance fo r  m a s s  t r a n s f e r  at the su r f ace  of a je t .  Nonl inear  e f fec t s  can lead to cons ide rab le  r e t a r d a -  
t ion of  the b r eakup  of a je t  of v i s c o e l a s t i c  l iquid and to an i n c r e a s e  in i ts  length [6, 7]. 

We note that  the b r e a kup  of a jet  o c c u r s  jus t  because  of the g rowth  of a x i s y m m e t r i c  osc i l l a t ions .  In fac t ,  
in the gene ra l  case  of a s y m m e t r i c  p e r t u r b a t i o n s  of a je t  r e l a t ive  to the axis  the d i spe r s ion  equat ion of the p r o b -  
lem is r educed  to 

2 {I s q- OaKs (Is+l + Is-l)/I2p~ (Ks-~ + sKs/x)]} -v 0 ,n Pi J ~p (X, d, s , 

where  54 q' n << I; ~(X, d, s) = 0(1). When s >- 1 the r ea l  p a r t  of d cannot  be l a r g e r  in o r d e r  of magu i -  
Pt / 

t ide than Mql(nP2/p  i)q2, and hence the g rowth  of these  p e r t u r b a t i o n s  is s lower  than the g rowth  of a x i s y m m e t r i c  
p e r t u r b a t i o n s .  

F o r  a je t  with an Ohnesorge  n u m b e r  ~ >> 1 the d i spe r s ion  equat ion of the p r o b l e m  has the solut ion 

1 - -  X 2 ( 3 . 3 )  
f =  

6 - -  Z + [Ko/(xKi) - -  1] P2 Re/pt 

[here Z is  no l a r g e r  than one in o r d e r  of  magn i tude ,  and the sma l l  quant i t ies  Zq' (P--~-~ Re) q" ( 1 ) q , .  a re  omit ted] .  

If the l iquid is Newtonian (Z = 0) and the re  is  no m a s s  t r a n s f e r  at the su r f ace  of the jet  (Re = 0), then Eq. (3.3) 
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coincides with the result obtained by Veber [2]. The presence of elastic effects in the liquid leads to an in- 
crease in the rate of growth of perturbations and hence to shortening of the jet (if nonlinear effects are unim- 
portant). The expression for the length of a jet before breakup obtained using (3.3) with Re = 0 coincides with 
the result of [8], in which the stability of a jet of viscoelastic liquid with the rheological equation (1.2) without 
allowance for mass transfer is investigated. The release of gas at the surface of a jet destabilizes perturba- 
tions for which X > 0.6 and stabilizes them when X < 0.6. Gas absorption leads to the opposite effect. A simi- 
lar result was obtained for a jet with a small Ohnesorge number (3.1). Thus, gas release at the surface of a 
jet stabilizes it with respect to perturbations with a very long wavelength and destabilizes it with respect to 
other perturbations. 

The explanation for this is that the generation of vortices in the surrounding gas which destabilize the 
jet is very small in the case of perturbations with a very long wavelength, and hence the stabilizing effect of 
the velocity field of the main flow outside the jet predominates. With a decrease in the wavelength of the dis- 
turbance the generation of vortices increases, which leads to the growth of perturbations in the final analysis, 
The opposite effects are observed with gas absorption at the surface of the jet. 

The influence of the indicated processes on the breakup of a jet depends on what wavelength corresponds 
to the fastest growing perturbation. Therefore, when ~ << 1 gas release accelerates and gas absorption re-  
tards the breakup of a jet, in contrast to the case of ~ >> 1, where gas release and absorption have the oppo- 
site effects. 

We note that the direct influence of mass transfer on the stability of a jet is small, since it is determined 
by terms of order P2/Pl << 1 in (3.1)-(3.3), whereas the contribution of terms connected with other effects is of 
order unity. Therefore, only a change in the coefficient of surface tension, taking place in processes con- 
nected with mass transfer, as a rule, can appreciably affect the length of the unbroken-up part of the jet, since 
L "~ (d~'~- ~ when ~-M << 1 and L ~ (f~)- 1 when ~ >> I ,  while the coefficient of surface tension is taken at the 
temperature characteristic of the process of mass transfer under consideration. 

In the case of a vanishingly low surface tension of the liquid (an ideal liquid, for simplicity) the charac- 
teristic time ~ - ~ 7 ~ - o f  capillary breakup can prove to be greater than the characteristic time [P2Uk/p I]-1 of 
breakup of the jet due to mass transfer. In this case the dispersion equation of the problem has the solution 

l,[l--Kol(xK,)]signU+v/I li[l--Ko/(~K,)] }2+ T ( I _  X2)I i (3.4) 
w = 2 [1o + P~Kol,/(p,K,)] 2 [Io + p2KoIt/(p,K,)] " ~ [1o + paKoIt/(P,K,)] ' 

where  T = c l p ~ / p ~ U 2 a .  

The influence of m a s s  t r a n s f e r  on the s tabi l i ty  of a jet  is  analogous to that  obtained in the solutions (3.1) 
and (3.3). In p a r t i c u l a r ,  if 

r <<{. }" (3.5) 
X [1o + PaKol,/(P,K,)] 2 [Io + p2Kol,/(PtK,)] ' 

then 

I ,  [1 - -  g0/(xK,)] sign U 
w = lo + P2Kol , / (piKt)  (3.6) 

A je t  for  which the condition (3.5) is sa t i s f ied  p roves  to be s table  with r e spec t  to pe r tu rba t ions  with X < 0 . 6 i f  
gas  is  r e l e a s e d  at i ts  sur face  and unstable if gas  is absorbed .  When • > 0.6 the gas  r e l e a se  des tab i l izes  the 
je t  while absorpt ion  s tab i l i zes  it. 

A P P E N D I X  

4 .  Different ia t ing the f i r s t  of equations (1.11) with r e spec t  to z and the th i rd  with r e spec t  to r and sub-  
t r ac t ing  the resu l t ing  equat ions ,  we find the equation for  0, the projec t ion  of the cur l  of a veloci ty  per tu rba t ion :  

0 ~ ,  C,  Oe,  C,  Ov'~ Ov r 
Ot -} r Or = - ~ -  ~2,, g ~ , =  c)~ Oz =- -cur l~  

S imi l a r ly ,  f r o m  s y s t e m  (1.11) we obtain 

0~2 C, Og~ C, Over Ov~ 
Ot -} r Or r ~ g~2 , g~2 = O ~  ~ - r curl ~ V ' ,  

O~s C, 0 ~  C, 1 Ov'~ Ov~ 
Ot + r Or r ~ -  ~ ' ~3 = r O0 Oz --curlrY'.  

(4.i) 

(4.2) 
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The f i r s t - o r d e r ,  l inear ,  inhomogeneous equations (4.1) and (4.2) descr ibe the conservat ion of curt  of a veloc- 
ity perturbat ion in an ideal liquid and can be obtained direct ly  by l inearizing the Hetmholtz equation. 

The solutions of the Cauchy problem for  Eqs.  (4.1) and (4.2) with the initial conditions 

have the form 

P. , .  = % .  (r ) ,  m = 1, 2 ,  3 at  t = 0 
(4.3) 

r r [~ 
~1 = --~ ~, ([~), -q2 = --~ % ([3), ~3 = - - r  % ([~)' (4.4) 

where fl = ~2(r2/2 - Clt). The functions rp m contain 0 and z as pa r ame te r s .  

The express ions  (4.4) allow one to determine the velocity perturbation field for  any initial perturbation.  
The solution of the Cauchy problem can be constructed s imi lar ly  in an investigation of the hydrodynamic s ta-  
bility of liquid combustion (a burning half plane). 

In the given case one must  be confined to considerat ion of three functions qv m which give the same depen- 
dence on t ,  0, and z of per turbat ions  in the region filled with gas as was already obtained inside the jet [Eqs. 

l(Jr2 I 2C~ if- ikz q- is{) -~- l o t  
-- - -  ' - (4.5) 

(1.9)]. We have 

Represent ing the velocity per turbat ions  in the form 

(v~, v~, v~) = (Ft (r), F2 (r), F3 (r)) exp (ikz -F isO q- lot), (4.6) 

f rom (4.5) and the f i rs t  equation (1.6), the continuity equation, we obtain a sys tem of four ordinary" differential 
equations with the unknown functions F ~, F 2, and F 3. Then the condition 

Q = (Ek - -  sD) C--L (4.7) 

must  be sat isf ied,  and the sys tem obtained is reduced to the equation 

F ~ +  F~ 1 + - -  F 3 = - - D  k~ -- E - -  D exp - -  (4.8) 

where r~ = kr  and F t  m) = dmF3/dr~ n. The solution of (4.8) which is bounded as r ~ ~ is found by the Lagrange 
method. Thus, we obtain Eqs.  (1.13) for per turbat ions in the region filled with gas.  

NOTA TION 

r ,  0, z, cylindrical coordinates;  t, t ime;  V, velocity vector  with project ions Vr, v0, Vz; P, s t r e ss  ten- 
sorwi th  components P r r ,  P00, Pzz,  Pr0,  Prz ,  P0z; S, t enso ro f  s t ra inve toc i t ies ;  p, p r e s su re ;  p, density; ~/, co- 
efficient of v iscosi ty ;  p, Lam6 coefficient;  ~,  coefficient of surface tension; U, radia lvetoci ty  of gas at surface 
of unperturbed jet (U = j/P2) ; J, mass  flux at surface of jet;  k, s, wave numbers  of aper turbat ion;  or, frequency of 
per turbat ions ;  P0g (g = 1, 2), p re s su re  at surface of unperturbed jet;  a, radius of unperturbed jet;  L, length 
of jet before breakup;  A, B~, B 2, C, D, E, Q, H, constant coefficients;  Re = P~Ua/~ ;  M = ~2/p~c~a; Z = c~/pa;  
d = i~/~/o~/pla~+; w = i o / p 2 1 U I k / p l ;  f = ia/(c~/71a); T = 0 cor responds  to a Newtonian liquid; ~ > 0 corresponds  
to a viscoelast ic  liquid. The indices 1 and 2 cor respond  to regions inside and outside the jet. Perturbat ions 
are  marked  by p r imes .  
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INTENSIFICATION OF CONVECTIVE HEAT EXCHANGE BY 

RIBBON SWIRLERS IN THE FLOW OF ANOMALOUSLY 

V I S C O U S  L I Q U I D S  IN P I P E S  

Y u .  G.  N a z m e e v  UDC536.242.001.5 

The resul ts  are  given on an experimental  investigation of the intensification of convective heat 
exchange in anomalously viscous media  through the use of inser ts  of twisted ribbon. 

The intensification of convective heat exchange in pipes and channels of heat-exchange apparatus is a 
mos t  important  problem for  many branches  of industry.  Solving this problem enables one to reduce the size 
of heat-exchange apparatus and to increase  their  output. 

A well-known means of intensifying convective heat exchange in pipes is the use of helical inser t s  of 
twisted ribbon. By now extensive experimental  mater ia l  has been accumulated on heat exchange in pipes con- 
taining helical intensif iers  [1-5]. All the available tes t  data pertain to the case of the flow of viscous liquids, 
however.  In this case it is seen f rom an analysis  of the well-known repor t s  [1, 5-7] that the use of ribbon 
swi r le r s  intensifies heat exchange in viscous liquids by up to 2.5 t imes ,  with the larges t  increase  in the coef-  
ficients of heat t r ans f e r  being observed in the region of Reynolds numbers  f rom 3000 to 6500. The cause of 
the increase  in heat t r a n s f e r  in viscous liquids is the formation and development of secondary flows of the 
f i r s t  and par t ly  of the second kind under the action of centrifugal fo rces .  In addition, the use of an inser t  of 
twisted ribbon inc reases  the heat-exchange surface and an increase  in heat t r ans fe r  also occurs  due to the 
ribbing effect.  With an increase  in the Reynolds number  above 6500 turbulence has the prevai l ing effect on 
the intensity of heat t r ans fe r ,  while the role of secondary flows dec reases .  

Unfortunately, up to now test  data are  ent i re ly absent on the intensification of heat exchange by the indi- 
cated means  in the flow of anomalously viscous liquids, which find very  wide application in modern technology. 

On the bas is  of the fact that the use of ribbon swir le rs  provides a considerable gain in heat t r ans fe r  in 
the flow of viscous liquids, in the presen t  repor t  an attempt was  made to experimental ly  determine the poss i -  
bili t ies for  the intensification of heat exchange in anomalously viscous media using the given swi r le r s ,  as well 
as to es t imate  the efficiency of their  use. 

The tests  were conducted on the experimental  installation descr ibed in [8]. A pipe of 1Khl8N10T stain- 
less  steel with an inner  d iameter  of 12 mm and a length of 1200 mm was used as the working section. The 
t rea tment  of the inner surface of the pipe cor responded to the eighth c lass  of puri ty.  The tests  were conducted 
with helical inser t s  of twisted b ra s s  ribbon 0.5 mm thick. The pitch of the ribbon swir le rs  (in a rotation of the 
ribbon by 180 ~ lay in the range f rom 38 to 600 mm.  All the tests  were conducted under steady thermal  and 
hydrodynamic conditions. 

Tests  with water  and t r a n s f o r m e r  oil, which showed good convergence with the well-known generalizing 
cr i te r ia l  equation of [6] were made pre l iminar i ly  on the experimental  installation. Aqueous solutions of 
sodium carboxymethylcel lulose (Na-CMC) of different concentrat ions were used as the model anomalously 
viscous liquids. The rheological  cha rac te r i s t i c s  of the model liquids were determined on a Rheotest ro tary  
v i scos ime te r  and on a H6ppler v i scos ime te r .  The resul ts  of the v i scos imet r i c  measurements  of two model 
liquids in the tempera ture  range f rom 20 to 80~ are presented  in Fig.  1. The thermophysical  charac te r i s t i c s  
of the anomalously viscous liquids were determined in accordance with [9, 10]. The resul ts  of the t h e r m o -  
physical  measuremen t s  are  given in Table 1. 
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